

NEET - UG

NATIONAL TESTING AGENCY

Botany

Volume - 1

CONTENTS

l.	Reproduction in Organisms	1
2.	Sexual Reproduction in Flowering Plants:	18
3.	Principle of Inheritance and Variation	42
4.	Molecular Basis of Inheritance	85
5.	Strategies for Enhancement in Food Production	122
6.	Microbes in Human Life	135
7.	Organism and Population	150
8.	Biodiversity and Conservation	189
q.	Environmental Issues	206
10.	Envriornment Issues	226

Unleash the topper in you

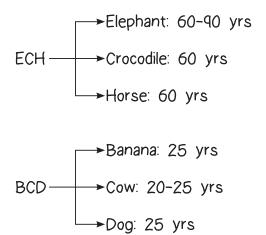
REPRODUCTION IN ORGANISMS

Panchanan Maheshwari:

- 1. Father of Indian plant embryology.
- 2. First book of NCERT was published (in 1964) under the guidance of P. Maheshwari.
- 3. Fellowship # Royal society of London.
 - # Indian National Science Academy
- 4. Book:- An introduction to the embryology of Angiosperm.

Organism:

* It is the living unit of nature, which has following character.


Individual/Organism	Population Character
Birth	Birth rate
Death	Death Rate
Sex	Sex ratio
Age	Age ratio/Pyramid
Unlea	ash the topper in you

Lifespan:

- * It is the time interval b/w birth and natural death of an organism.
- * Life spam period varies from few minutes to several years.
- * Life span never depend on body size or body complexity of organisms.
 - Eg. Body size of crow and parrot are almost similar but lifespan of
 - 1. Crow: 15 Yrs
 - 2. Parrot: 140 yrs.
 - Eg.- Body size of Mango and Peepal tree are almost same but lifespan of
 - 1. Mango: 200 yrs
 - 2. Peepal: 2300 yrs

More Examples:

Reproduction:

- * It is the biological process in which parents are involved and produce fertile offspring's, similar to itself.
- * Requirement of reproduction:

To ensure the continuity of species.

Factors affecting Reproduction:

- * External/ Environmental/ habitat factors.
- * Internal factors/ internal physiology.

Basic Characteristics/Property/Features of Reproduction: Cell Division:

Mitosis Meiosis

Equational division # Reductional division

Responsible for creating variations (evolution)

- * Duplication of cell components.
- * Increase the reproduction unit.

Types of Reproduction:

Asexual	Characters	Sexual
Single	No of Parents	Double
+/√	Gamete formation	✓
*	Fertilization/syngamy	✓
Clone 100% Similar to parent (morpho. Of genetically)	Product	offsprings
Fast	Speed	Slow
+/√	special organ invl.	✓
X	Involvement in solution	✓

Note:

- * Asexual reproduction, generally present in monera, Protista, Plant and Animals.(Simple body orgnisation)
- * Animal and plant (higher) generally exhibit sexual reproduction.

Asexual Reproduction:

7. Fission:

- * It is the type of Amitosis cell division.
 - # Spindle fibre formation Absent
 - # Direct karyokinesis Present
- * Types of Binary Fission:
 - ↓ Basis division Plane

Simple Binary Fission:

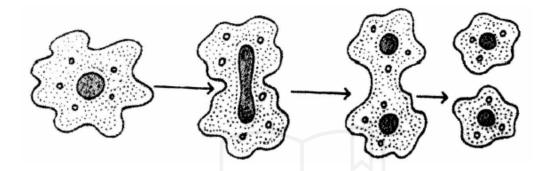
- * Cell divide from anyplane/not any fixed plane.
 - Eg. Amoeba.

Longitudinal Fission:

Eg: Euglena

Transverse Binary Fission:

Eg. Paramecium, Diatoms, Bacteria.


2. Multiple Fission:

Plasmodium - In favorable conditions

Amoeba divide by multiple fission.

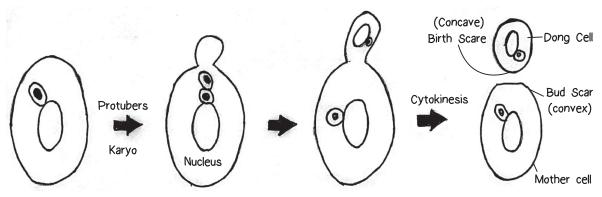
Amoeba in Adverse condition.

Amoeba:

Encystment:

* Formation of cysts (3 layers).

Note:


- * Amitosis division present in bacteria (due to presence of direct karyokinesis).
- * Mitosis division present in Ameoba and yeast (due to in-direct karyokinesis)

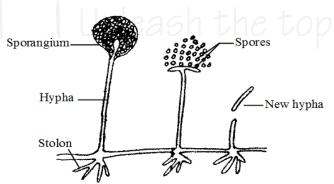
2. Budding:

- * Unequal cytokinesis present in budding process.
- * Existance of mother cell after the budding process.
- * Protuberance (outgrowth) present in budding.

Types:

- * External Budding: Yeast, hydra
- * Internal Budding: Porifera (Gemmules)

3. Spore- Formation:

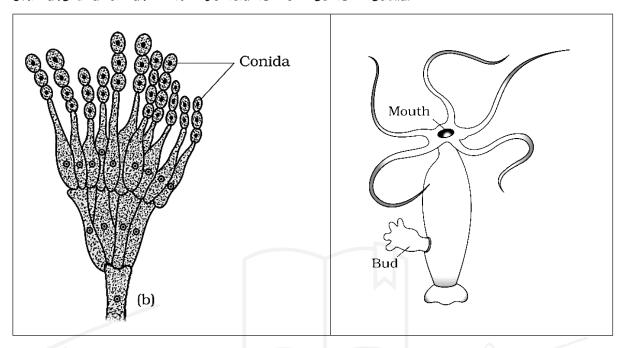

* Spore is a special structure present in fungi and Algae for reproduction.

Types of Spore:

	Meiospore		Mitospore
*	Formed by Meiosis	*	Formed by mitosis
	Eg. Ex Ascospore and Basidiospore		Eg: Zoospore, conidia, sporangiospore

Zoospore:

- * Mostly present in algae. (because of motility) and oomycets.
- * Motile structure →flagella +ve
- * No. of Flagella = (1) or (2)
- * Heterokont condition present.
- * Formed in favorable condition (thin-walled)
- * Zoospore formed in zoosporangia.
- * Shape: Pyriform Kidney Shaped


Spore Formation in a Fungus (Rhizopus)

Conidia:

- * Non motile structure.
- * Flagella (Absent)
- * Formed in favorable condition. (Thin wall present)
- * Exogenous origin.

- * Conidiophore Hyphae at which conidia is formed.
- * Ultimate branch at which Conidia is formed is medulla.

4. Fragmentation:

Eg. Fungi, Algae (Spirogyra and Ulothrix), Protonema in Bryophytes.

Green creeping, Branched, Multicellular

Note: Spirullina unicellular green Algae.

5. Vegetative Reproduction:

- * Any somatic part of plant involved in reproduction and form a new progeny.
- * Vegetative propagules: Part of Plant which is involved in vegetative Reproduction

Types:

1. Natural Vegetative Reproduction:

A. By Root:

Tap Root	Adventitious Root
i. Dalbergia	i. Dahalia
ii. Popules	ii. Asparagus

B. By Leaf:

Marginal Leaf Bud:

eg: → Bryophyllum

→ Bigoniya

→ Kalanchoe

Leaf Tip Bud:

eg: Adiantum (walking fern)

Leaf of Bryophyllum with buds in the margin

C. By Stem:

1. Underground stem:

* It is the prennating or Protective structure.

a. Rhizome:

Eg: Dryopteris

Ginger

Turmeric

Banana

- * Branching
- * Horizontal growth (Present)
- * W.r.t. earth surface.
- * Adventitious root. (Present)

b. Corm:

Eg: Zaminkand (amorphophinres)

Colocasia [vjch]

Coccus [dslj]

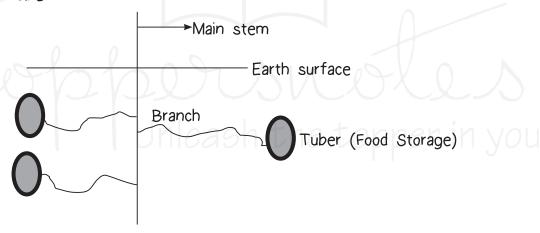
Colchicum

Gladiolus

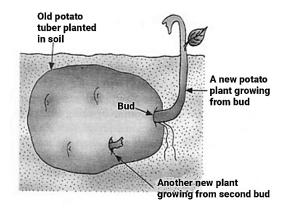
- * Branching x
- * Vertical growth

* Adventitious root (Present)

c. Bulb:


Eg: Onion, Garlic

- * Disc shaped stem present.
- * Adventitious root (Present)
- * Edible part → FLESHY leaf.
- * Dry leaf present in Bulb (Tunica)


Function of FLESHY LEAF:

- * Food storage
- * Protection

d. Tuber:

eg: Potato

2. Sub-aerial Stem:

* It is responsible for increasing the distribution of plant in new habitat (niche)

a. Runner:

- * Long internode present
- Single OR few leaf present at node. eg: Grasses

b. Sucker:

- * Underground branch of stem initially moves parallel to earth surface then upwards.
 - * Ca P Banana
 - * Chrysanthemum
 - Pineapple

Sucker

c. Stoleon:

- Upper branch of stem initially move parallel to earth surface vertically down wards.
 - JAM
 - **Jasmine**
 - Mint

Stoleon

d. Offset:

Eg: Pistia, Eichhornia (water Hyacinth)

Group/Tuft of leaves and root present at node.

Shout internode present.

Offset

Note:

- * "TERROR OF BENGAL": Eichornia.
- * Bengal Famine : Helminthosporium oryzae
- * Eichornia reduces dissolved oxygen (DO) level in water body (due to
- over growth)

- * Entry of Eichornia into India due to shape of leaf and flower.
- * Grow in standing OR stagnant water.

3. Bulbils:

It is the fleshy bud which is responsible for reproduction process.

- * Gloriosa
- * Oxalis
- * Lily
- * Dioscorea
- * Pineapple
- * Agave OR century Plant.(modified florel bud convert to bulbils)

2. Artificial Vegetative Reproduction:

- * Favorable Season: Rainy season, Spring season
- * Pre requisites of artificial vegetative Reproduction:
- * Presence of Bud.
- * Formation of adventitious root.

Types:

Cutting Method:

- * Cutting and Rooting Process Present.
- * Auxin hormone (IAA, IBA, NAA) used for formation of adventitious root. eg: China rose, Rose, sensevieria, citrus, Blackberry, Raspberry.

Layering Method:

- * Rooting and cutting Mechanism present.
 - MECHANISM-
- * The lower flexible branch of plant defoliated and pegged down into earth surface.
- * Adventitious root formed due to the action of Auxin.

a. Tip Layering:

Ex: Blackberry and Raspberry.

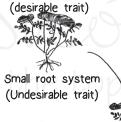
b. Tranche Layering:

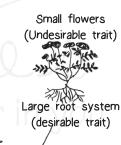
Ex: Walnut and Mulberry (शहतूत)

c. Goote or Air Layering:

This method is generally used for tropical and subtropical tree and shrubs.

Process:


- * Ring Bank removed from Tree branch.
- * Medium applied at cut part of branched. Medium formed by following contents:
 - 1 part low-dung
 - o 1 part moss
 - 2 part clay particles
- * Auxin applied for formation of adventitious root.


eg: Go Pa L \rightarrow Litchi Goote Pomegranate Large flowers Small

3. Grafting Mechanism:

* It is the Mechanism to form a composite plant by using two different plants.

* Pre-requisite : cambium OR Vascular Tissue presence.

The new plant has both of the desirable features

Ques: Calculate the no. of chromosomes in PEN (Primary endosperm nuc.), Antipodal cell, Integuments, synergid cell if 10 chromosomes present in leaf cell of composite plant?

Soln.: 2n = 10 PEN = 15

Antipodal = 5Integument = 10

Synergic = 5

CharactersAnnualBiennialPerennialLIFE-SPANSingle SeasonTwo season> Two SeasonEXAMPLESWheat, Rice, RaddishMango, BananaMaizeMaize

FLOWRING	Monocarpic	Monocarpic	Polycarpic Plant (Most perennial)
OR	(All annual)	(All annual)	Bamboo,
FRUIT			Strobilanthus Kunthiana are
FORMATION			monocarpic perennial plants

* In Perennial Plant "Recovery stage" Present in b/w two successive flowering period. (not Juvenile stage)

Life Stage:

1. Juvenile stage:

* Organism achieve the reproduction ability by growth and maturation in Juvenile stage .

2. Reproductive stage:

* Organism reproduce and from offspring which is similar to itself.

3. Senescent/Ageing/Post Reproductive Stage:

- * Functional and structural deterioration of and organism.
- * Senescent leads to death of an organism.

Note:

- 1. All the three stages are clearly observed in annual and Biennial Plants.
- 2. Due to the interactions of Hormonal and Environmental change organism can shift from one stage to another stage.

1. Gamete Formation replete By Mitosis By Meiosis Eg. Algal eg. Pteridophytes Gymno. Bryophyta Gymno. Angiosperm In volumente Transfer —	Most critical/vital went/stage reproduction External Fertilization Fertil eg. Si Algal	of ernal izatio	ion
By Meiosis eg. Pteridophytes ta Gymno. Angiosperm te Transfer –	tion	Internal Fertilization	
By Meiosis eg. Pteridophytes ta Gymno. Angiosperm te Transfer –	10	Internal Fertilization	
eg. Pteridophytes Gymno. Angiosperm te Transfer –	2710	Fertilization	Always Zri
Gymno. Angiosperm	70		Growth
Angiosperm	0	eg. spirogyra	* * * * * * * * * * * * * * * * * * *
Angiosperm -	2	Location: Bryophyta	Embryo tormanori
I		In Pteridopyta	eg. Bry, Pteri, Gymn, Anigo
I		Archegonia	Algal — Embryo formation x
) S	Gymnosperm	ii) seed formation
	In water	Angiosperm	Gymno, Angio
	15		iii) Fruit formation –
	人 h	Location:	Only in Analogoetta
a) By H ₂ O — Algal, Bryophyta, Pteridophyta) th	In embryo sac.	$\frac{7}{100}$ with $\frac{1}{100}$ $\frac{1}{100}$ $\frac{1}{100}$ $\frac{1}{100}$
Angiosperm, Gymnosperm carries of males	e t	Exofertilisation/cross	ions.
gamete	20	fertilization	* In some Algal and Fungi zygote
Pollen – grain	pp	Endofertilisation/self	becomes Thick walled in adverse
Male gamate reached to ovule with the help of pollen Tube.	er i	fertilization	condition.

SOME TERMINOLOGY:

1. Monoecious Plant:

- * Both Male and Female flower present in a similar Plant.
- Monoecious Plant = Bisexual Plant = Homothallic Plant
 Ex. (NCERT) Coconut, Cucurbits.

2. Dioeciously Plant:

- * Both male and female flower present present at different plant.
- * Dioecious Plant = Unisexual Plant = Heterothallic Date Palm, Papaya Ex: Date — palm, Papaya

3. Isogamies Condition:

* Male and Female gametes are morphologically similar but not physiolo- gically.

Ex: Spirogyra, Chlamydomonas — Rhizopus (FUNGI)

4. Heterogamous Condition:

- * Both Male and female gametes are Morphologically and Physiologically different. Ex: * Fucus, Volvox, Red Algal.
 - * All Bryophyta, Pteridophyta, Gymnosperm and Angiosperms.

Marchantia:

* Marchantia is dioecious Bryophyta

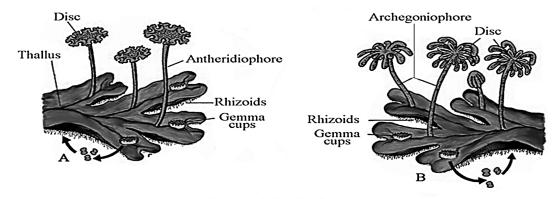
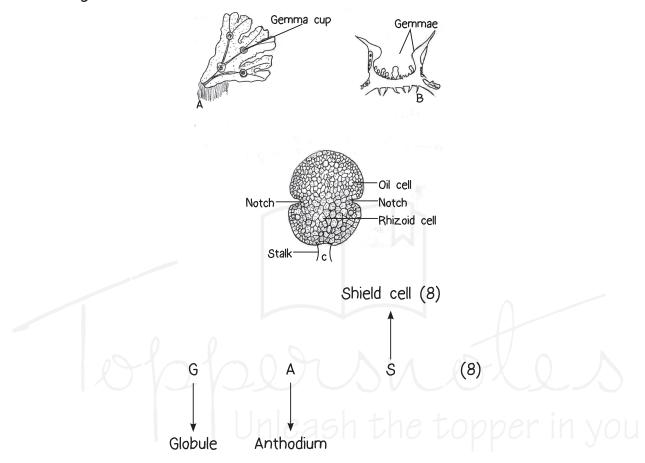
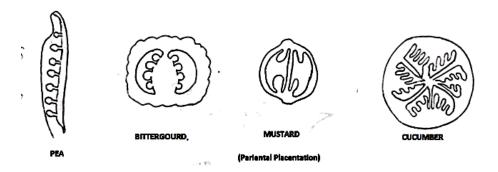



Fig: Marchantia spp. (A) Male plant, (B) Female plant.

Chara:


- * Example of Monoeious Green Algal.
- * Sex Organ Multinuclear and Jacketed.

Protandrous Condition present in chara.

Unicellular Organisms are Immortal:

* Plant Issued culture /Micro propagation is a type of artificial vegetative reproduction. SOME IMPORTANT DIAGRAMS:

