

NEET - UG

NATIONAL TESTING AGENCY

Physics

Volume - 3

Contents

1. Simple Harmonic Motion 1
2. Ray Optics 32
3. Wave Optics 107
4. Electron Physics 128

SIMPLE HARMONIC MOTION

\# Oscillations:

Periodic Motion:

* That motion which repeats itself after a regular time interval.
* That regular time interval is called time period of the motion.

Example: Rotation of planet around the sun, rotation of earth, uniform circular motion.

* If a particle repeats its motion after every fixed interval of time, which is called periodic time the motion is said to be periodic.

Its angular frequency is given as $\omega=\frac{2 \pi}{\mathrm{~T}}$

Ques.:Find ω for second hand in a watch $\omega_{\mathrm{s}}=\frac{2 \pi}{60}=\frac{\pi}{30} \frac{\mathrm{rad}}{30 \mathrm{sec}}$
Find ω for minute hand in a watch $\omega_{m}=\frac{2 \pi}{60 \times 60}=\frac{2 \pi}{3600}=\frac{\pi}{1800}$
Find ω for revolution of earth $\omega_{\mathrm{E}}=\frac{2 \pi}{365 \times 86400}$

Oscillatory:

* That periodic motion which is about a fixed point, like to-and-fro, back-and-forth, up-and-down.

Example:

* The needle of a sewing machine.
* The motion of a ball in bowl.

Note: All oscillatory motion are periodic but all periodic motion are not oscillatory.

Harmonic Functions:

* Those mathematical trigonometric functions which are periodic and continuous.

$$
y=\sin k x
$$

$$
y=\cos k x
$$

Simple Harmonic Motion:

* If a particle moves up and down (back and forth) about a mean position (also called equilibrium position) in such a way that a restoring force/torque acts on a particle which is proportional to displacement, then motion is called simple Harmonic Motion (SHM).
Exmaple: Motion of body syspended by a spring.
* For SHM

Equation of SHM: Every SHM can be best represented as a projection of a particle in circular motion on its diameter.

$$
a=\frac{d v}{d t}=-\omega^{2} \cdot \mathrm{~A} \cdot \sin \omega t \text { (acceleration) }
$$

$$
\Rightarrow \quad \times \quad \square
$$

$$
\frac{d^{2} x}{d t^{2}}=-\omega^{2} x(\text { from eqn. (1)) }
$$

$$
\Rightarrow \quad \frac{d^{2} x}{d t^{2}}+\omega^{2} x=0
$$

* Called "Basic Differential Equation" of motion of a particle in SHM.

1. On a straight line

$$
x=A \sin (\omega t+\phi)
$$

2. Condition of SHM:

$$
\begin{aligned}
& a=-\omega^{2} x \\
& \frac{d^{2} x}{d t^{2}}+\omega^{2} x=0
\end{aligned}
$$

1. On a circular arc

$$
\theta=\theta_{0} \sin (\omega t+\phi)
$$

2. Condition of SHM:

$$
\alpha=-\omega^{2} \theta
$$

$$
\frac{d^{2} \theta}{d t^{2}}+\omega^{2} \theta=0
$$

Simple Hamonic Motion
3. Restoring Force:

$$
\mathrm{F}=-m \omega^{2} x
$$

$$
k=m \omega^{2}
$$

4. Time Period:
$\mathrm{T}=2 \pi \sqrt{\frac{m}{k}}$
5. Restoring Torque:

$$
\tau=-\mathrm{I} \omega^{2} \theta
$$

4. Time Period:

$$
\mathrm{T}=2 \pi \sqrt{\frac{\mathrm{I}}{m g l}}
$$

Ques.: Find the amplitude at $t=\frac{3 \mathrm{~T}}{4}$.

at

$$
\begin{aligned}
& t=\frac{3 \mathrm{~T}}{4} \\
& x=a \sin \frac{2 \pi}{\mathrm{~T}} \times \frac{3 \mathrm{~T}}{4} \\
& x=a \sin \frac{3 \pi}{2}
\end{aligned}
$$

Ques.:A particle starts performing SHM and starts from mean position towards the extreme.
Find time taken by particle from 0 to $a / 2$
Solns.:

$$
\begin{aligned}
x & =\frac{a}{2} \\
& =\frac{a}{2}=a \sin (\omega t) \\
& =\sin \frac{\pi}{6}=\sin \frac{2 \pi t}{\mathrm{~T}} \\
& =\frac{\pi}{6}=\frac{2 \pi t}{\mathrm{~T}}
\end{aligned}
$$

$$
\Rightarrow \quad t=\frac{\mathrm{T}}{12} \mathrm{sec}
$$

Phase:

* The ' ωt ' as a whole or ' $\omega t+\theta$ ' as a whole gives the phase of the particle.
* Phase at any time gives the location \& direction of velocity, it also tells the total distance covered by the particle.

For eg: If a particle has a phase $\frac{\pi}{3} \& \frac{2 \pi}{3}$ at
Two different time then one particle is moving away from the mean position while the other is moving towards mean position.

$$
\begin{aligned}
&=\frac{\pi}{3}, \frac{2 \pi}{3} \\
&=x=a \sin \omega t \\
& v=a \omega \cos \omega t \\
&=x^{2}=a \sin \left(\frac{\pi}{3}\right), x_{2}=a \sin \left(\frac{2 \pi}{\sqrt{3}}\right) \\
&=x_{1}=\frac{\sqrt{3 a}}{2} \\
& x_{2}=\frac{\sqrt{3 a}}{2} \\
& \mathrm{~V}_{1}=a \omega \cos \left(\frac{\pi}{3}\right) \\
& \mathrm{V}_{2}=a \omega \cos \left(\frac{2 \pi}{3}\right) \\
& \mathrm{V}_{1}=\frac{a w}{2} \\
& \mathrm{~V}_{2}=\frac{-a w}{2} \\
& \mathrm{~V}=0 \\
& \begin{array}{l}
\text { Particle } 1 \\
\mathrm{E} \left\lvert\, \frac{\sqrt{3} a}{2}\right. \\
\text { Particle } 2
\end{array} \mathrm{E}=0
\end{aligned}
$$

- Initial phase $=$ choice of $t=0$
- Even if particle has some initial phase, its mean position does not change.

Simple Htamonic Motion

Initial Phase:

The phase at time $t=0$ is known as the initial phase.
Let the particle's equation is

$$
\begin{aligned}
x^{1} & =a \sin (\omega t+\theta) \text { then on putting } \\
t & =0 \text { let the particle is at } x^{1},
\end{aligned}
$$

then the initial phase will be

$$
\begin{aligned}
& =x^{1}=a \sin (\omega \times 0+\theta) \\
\Rightarrow \quad \sin ^{-1}\left(\frac{x^{1}}{a}\right) & =\theta
\end{aligned}
$$

Initial phase does not represent the mean position. Mean position is that where force $=0$,

$$
\operatorname{acc}^{n}=0, x=0
$$

For eg:
Let the particle equation is $x+1=4 \sin \omega t$
In that case $x=-1$ will be the mean position and particle's amplitude co-ordinate are

$$
x=5 \text { and } x=3
$$

Velocity in SHM:

* Maximum velocities are $\pm a \omega$
* Maximum velocity occurs at mean position and at extreme position, it is zero.

$$
\text { We know, } \begin{aligned}
x & =a \cdot \sin \omega t \\
\Rightarrow \quad \sin \omega t & =\frac{x}{a} \\
v & =a \omega \cos \omega t
\end{aligned}
$$

$$
\begin{array}{rlrl}
& =a \omega \sqrt{1-\sin ^{2} \omega t} \\
& =a \omega \sqrt{1-\frac{x^{2}}{a^{2}}} \\
& =\omega \sqrt{a^{2}-x^{2}} \\
v & =w \sqrt{a^{2}-x^{2}} \\
& & x & =0, v= \pm a \omega \\
\text { at } & x & = \pm a, v=0 \\
& & \begin{aligned}
x
\end{aligned} \\
\Rightarrow & \mathrm{~V}^{2} & =\omega^{2}\left(a^{2}-x^{2}\right) \\
\Rightarrow & \mathrm{V}^{2} & =\omega^{2} a^{2}-\omega^{2} x^{2} \\
\Rightarrow & \mathrm{~V}^{2}+\omega^{2} x^{2} & =\omega^{2} a^{2} \\
\Rightarrow & \frac{\mathrm{~V}^{2}}{(w a)^{2}}+\frac{x^{2}}{a^{2}} & =1
\end{array}
$$

Graph b/w v \& x will be an ellipse.

Ques.: The maximum speed of a particle performing $S H M$ is $10 \mathrm{~m} / \mathrm{s}$, find speed when the particle is at distance half of the amplitude.
Solns.:

$$
\begin{aligned}
10 \mathrm{~m} / \mathrm{s} & =a \omega \\
\mathrm{~V} & =\mathrm{W} \sqrt{a^{2}-\frac{a^{2}}{4}} \\
& =\mathrm{W} \sqrt{\frac{3 a^{2}}{4}} \\
& =\frac{\sqrt{3}}{2} a \omega
\end{aligned}
$$

Simple Htamonic Motion

$$
\begin{aligned}
& =\frac{\sqrt{3}}{2} \times 10 \\
& =5 \sqrt{3} \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

Ques.: The time period of a particle performing SHM is ' T ' find the time, taken by the particle to complete $\frac{3^{\text {th }}}{8}$ oscillation.

Solns.:In complete oscillation, a particle travels a distace 4 A , hence $\frac{3}{8}$ th oscillation would mean a distance of $\frac{3 \mathrm{~A}}{2}$.
We can devide the distance in two parts.
Part 7: A distance A is travelled from mean position to extreme position. During this time taken $=\frac{\mathrm{T}}{4}$.

Part 2: $\frac{\mathrm{A}}{2}$ is travelled from extreme position towards mean position.

$$
\begin{array}{rlrl}
& y & =\mathrm{A} \sin \omega t \\
\frac{\mathrm{~A}}{2} & =\mathrm{A} \sin \omega t \\
\Rightarrow \quad \frac{1}{2} & =\sin \left(\frac{2 \pi}{\mathrm{~T}} t\right) \\
\Rightarrow \quad \frac{5 \pi}{6} & =\frac{2 \pi}{\mathrm{~T}} t \\
\Rightarrow \quad & \quad\left(\text { Looking for solution } \mathrm{b} / \mathrm{w} t=\frac{\mathrm{T}}{4} \text { \& } t=\frac{\mathrm{T}}{2}\right) \\
\Rightarrow & t=\frac{5 \mathrm{~T}}{12}
\end{array}
$$

1. Kinetic Energy:

$$
\begin{aligned}
\mathrm{V} & =a \omega \cos \omega t \\
& =\mathrm{KE}=\frac{1}{2} m a^{2} \omega^{2} \cos ^{2} \omega t \\
\mathrm{KE} \text { at time } t & =\mathrm{E} \cos ^{2} \omega t
\end{aligned}
$$

Time period for variation of $\mathrm{KE}=(\mathrm{T} / 2)$
Time period for variation of

$$
\begin{aligned}
x & \rightarrow \mathrm{~T} \\
\text { Energy } & \rightarrow \mathrm{T} / 2 \\
\mathrm{~V} & \rightarrow \mathrm{~T}
\end{aligned}
$$

* Avg. value of $K E$ with time

$$
=\frac{1}{\mathrm{~T}} \int_{0}^{\mathrm{T}} \mathrm{E} \cdot \cos ^{2} \omega t \cdot d t
$$

$$
=\frac{\mathrm{E}}{2 \mathrm{~T}} \int_{0}^{\mathrm{T}}\{1+\cos 2 \omega t\} \cdot d t
$$

$$
=\frac{\mathrm{E}}{2 \mathrm{~T}} \times \mathrm{T}
$$

$$
\mathrm{KE}_{\mathrm{avg}}=\frac{\mathrm{E}}{2}=\frac{1}{4} m \omega^{2} \mathrm{~A}^{2}
$$

* KE with distance:

Simple Htamonic Motion

$$
\begin{aligned}
\mathrm{KE} & =\frac{1}{2} m w^{2}\left(a^{2}-x^{2}\right) \\
\mathrm{KE} & =\frac{1}{2} m w^{2} a^{2}-\frac{1}{2} m w^{2} x^{2} \\
x & =\frac{<\mathrm{KE}>=\int_{0}^{a} \frac{1}{2} m w^{2} a^{2} d x-\int_{0}^{a} \frac{1}{2} m w^{2} x^{2} d x}{\int_{0}^{a} d x} \\
& =\frac{1}{a}\left[\frac{1}{2} m w^{2} a^{2}(a)-\frac{1}{2} m w^{2} \frac{a^{3}}{3}\right] \\
& =\frac{3}{6} m w^{2} a^{2}-\frac{1 m w^{2}}{6} a^{2} \\
& =\frac{1}{3} m w^{2} a^{2}
\end{aligned}
$$

2. Potential Energy:

P.E. with time:

$$
\begin{aligned}
\mathrm{U} & =\frac{1}{2} m w^{2} a^{2} \sin ^{2} w t \\
& =\mathrm{E} \sin ^{2} w t
\end{aligned}
$$

Avg value of PE with time

$$
\begin{aligned}
& =\int_{0}^{\mathrm{T}} \frac{\left(\mathrm{E} \sin ^{2} w t\right) d t}{\int_{0}^{\mathrm{T}} d t} \\
& =(\mathrm{E} / 2) \\
& \mathrm{E} / 2
\end{aligned}
$$

PE with distance

$$
\mathrm{U}=\frac{1}{2} m w^{2} x^{2}
$$

Avg PE with distance

$$
\langle\mathrm{U}\rangle=\frac{\int_{0}^{a} \mathrm{U} d \mathrm{X}}{\int_{0}^{a} d x}=\frac{1}{8} m w^{2} a^{2}
$$

Time period for variation of PE: T/2
3. Total Mechanical Energy:

$$
\begin{aligned}
\mathrm{E} & =\mathrm{KE}+\mathrm{PE} \\
& =\frac{1}{2} m \omega^{2}\left(\mathrm{~A}^{2}-x^{2}\right)+\frac{1}{2} m \omega^{2} x^{2} \\
\mathrm{E} & =\frac{1}{2} m \omega^{2} \mathrm{~A}^{2}
\end{aligned}
$$

The curves representing $K E, P E$ and total energy

Ques.:A body of mass 1 kg is executing simple harmonic motion which is given by $x=6$ $\cos \left(100 t+\frac{\pi}{4}\right) \mathrm{cm}$. What is the
i. Amplitude of displacement
ii. Angular frequency
iii. Initial Phase
iv. Velocity
v. Acceleration
vi. Maximum kinetic energy

Simple Htamonic Motion
Solns.: The given equation is $x=6 \cos \left(100 t+\frac{\pi}{4}\right)$ comparing it with $x=\mathrm{A} \sin (\omega t+\phi)$
i. Amplitude $=6.0 \mathrm{~cm}$
ii. Angular frequency $\omega=100 \mathrm{~s}^{-1}$
iii. Initial phase $=\frac{\pi}{4}$
iv. Velocity $\mathrm{V}=\omega \sqrt[4]{\mathrm{A}^{2}-x^{2}}=100 \sqrt{36-x^{2}} \mathrm{~cm} / \mathrm{s}$
v. Acceleration $=-\omega^{2} x=-(100)^{2} x=-10^{4} x$
vi. $\mathrm{KE}_{\text {max }}=\frac{1}{2} m \mathrm{~A}^{2} \omega^{2}=\frac{1}{2} \times 1 \times(0.06)^{2} \times(100)^{2}=18 \mathrm{~J}$

Angular SHM:

* In this type of SHMm particle oscillates in a circular arc.
* It can be a point mass or a rigid body.
* In case of rigid body, oscillation of centre of mass should be considered.

1. Simple Point Mass (Simple Pendulum):

(Restoring force) R.F. $=m g \sin \theta=m g(\theta)=m g\left(\frac{x}{l}\right)$

$$
\begin{aligned}
\mathrm{acc}^{n} & =\frac{g x}{l}=w^{2} x \\
w & =\sqrt{\frac{g}{l}} \\
\mathrm{~T} & =2 \pi \sqrt{\frac{l}{g}}
\end{aligned}
$$

Concept of Effective Length:

$$
\mathrm{T}=\sqrt[2 \pi]{\frac{\mathrm{Leff}}{g}}
$$

Example:

2. Compound Pendulum (Rigid Body):

$$
\begin{aligned}
& \mathrm{I}=\mathrm{I}_{\mathrm{cm}}+m l^{2} \Rightarrow \mathrm{I}=m \mathrm{~K}^{2}+m l^{2} \\
& \mathrm{~T}=\sqrt[2 \pi]{\frac{\mathrm{M}\left(\mathrm{~K}^{2}+l^{2}\right)}{m g l}}=\sqrt[2 \pi]{\frac{\left(\frac{\mathrm{K}^{2}}{l}+l\right)}{g}} \\
& \Rightarrow \quad \mathrm{~L}_{\text {eff. }}=l^{2}+\frac{\mathrm{K}^{2}}{l}
\end{aligned}
$$

(2)

$$
\mathrm{T}=\sqrt[2 \pi]{\frac{\mathrm{L}_{\text {eff. }}}{g}}
$$

(3) $\quad \mathrm{T} \uparrow$ ses gradually then \downarrow ses suddenly

* A child on a swing stands up suddenly then $T \downarrow$ ses.

Working Rule for SHM:

1. Find MP (Where F $=0$)
2. Displace the body from M.P.
3. Find new forces at new position
4. Find the force or its component towards MP, we call it restoring force.

$$
\frac{\mathrm{F}}{m}=\mathrm{Acc}^{n}=w^{2} x
$$

T increases and then decreases and again reaches to same initial value.

Simple Harmonic Motion
Ques.:If the period of oscillations of a simple pendulum is 4 sec , find its length. If the velocity of the bob in the mean position is $40 \mathrm{~cm} / \mathrm{s}$, find its amplitude, $g=9.8 \mathrm{~m} / \mathrm{s}^{2}$.
Solns.:
Velocity at mean position

$$
\mathrm{V}_{\max }=40 \mathrm{~cm} / \mathrm{s}
$$

Ques.: Time period of simple pendulum on earth surface is T , now the penduleum is taken upto a height $=\mathrm{H}=\mathrm{R} / 2$ where R is the radius of earth.

Solns.:

$$
\mathrm{T}=2 \pi \sqrt{\frac{l}{g}}
$$

g^{1} at $\mathrm{R} / 2$

$$
\begin{aligned}
& =g^{1}=\frac{g}{\left(1+\frac{\mathrm{R}}{2 \mathrm{R}}\right)^{3}}=\frac{4 g}{9} \\
\mathrm{~T}^{1} & =2 \pi \sqrt{\frac{9 l}{4 g}} \\
\mathrm{~T}^{1} & =\frac{3 \mathrm{~T}}{2}
\end{aligned}
$$

Concept of $g_{\text {efte }}$:

* It is based on the aceleration of frame of reference in which the simple pendulum is suspended.

$$
\begin{aligned}
& \mathrm{T}=2 \pi \sqrt{\frac{l}{g}} \\
& \Rightarrow \quad \mathrm{~T}^{2}=4 \pi^{2} \frac{l}{g} \\
& \begin{array}{ll}
\Rightarrow & l=\frac{\mathrm{T}^{2} g}{4 \pi^{2}}= \\
\Rightarrow & l=3.97 \mathrm{~m}
\end{array} \\
& \omega=\frac{2 \pi}{\mathrm{~T}}=\frac{2 \pi}{4}=\frac{\pi}{2} \mathrm{rad} / \mathrm{s} \\
& \mathrm{~V}_{\max }=\omega \mathrm{A} \\
& \mathrm{~A}=\frac{\mathrm{V}_{\max }}{\omega}=\frac{40}{\pi} \times 2 \\
& \mathrm{~A}=25.5 \mathrm{~cm}
\end{aligned}
$$

* To calculate geff, we need to calculate tension at the equilibrium position divide by the mass.

$$
g_{\text {eef }}=\frac{\text { Tension }}{\text { Mass }}
$$

Lift Cases:

$$
\begin{aligned}
\mathrm{T}-m g & =m a \\
\frac{\text { Tension }}{\text { Mass }} & =g+a \\
g_{\text {eff }} & =g+a \\
\mathrm{~T} & =2 \pi \sqrt{\frac{l}{g+a}} \\
\mathrm{~T} & =2 \pi \sqrt{\frac{l}{g+a}}
\end{aligned}
$$

Moving upwards with acc:

Moving with constant velocity:

$$
\mathrm{T}=2 \pi \sqrt{\frac{l}{g}}
$$

Free fall:

$$
\begin{aligned}
g_{\text {eff }} & \rightarrow 0 \\
\mathrm{~T} & \rightarrow \infty
\end{aligned}
$$

* Time peiod of pendulum is independent from mass.

$$
\begin{aligned}
& =\left[\frac{\mathrm{T}_{\mathrm{MP}}}{m}=g\right] \\
& =\mathrm{T}=2 \pi \sqrt{\frac{l}{\left(\mathrm{~T}_{\mathrm{MP}} / m\right)}}
\end{aligned}
$$

Simple Htamonic Motion

$$
\begin{aligned}
& =\mathrm{T}_{\mathrm{MP}}=\mathrm{M} g+\mathrm{M} a \\
& =\frac{\mathrm{T}_{\mathrm{MP}}}{\mathrm{M}}=g^{1}=g+a \\
& =\mathrm{T}^{1}=2 \pi \sqrt{\frac{l}{g+a}}
\end{aligned}
$$

* If lift is moving down with acc.:

$$
\mathrm{T}^{1}=2 \pi \sqrt{\frac{l}{g-a}}
$$

* If lift is moving with constant velocity

$$
\mathrm{T}^{1}=2 \pi \sqrt{\frac{l}{g}}
$$

* Although in the above cases T_{MP} changes but MP does not change.

MP and T_{MP} both changes
\Rightarrow
$\mathrm{T} \sin \theta=\mathrm{QE}$
\Rightarrow
$\mathrm{T} \cos \theta=m g$

