

NEET - UG

NATIONAL TESTING AGENCY

Physics

Volume - 4

CONTENTS

1. Electrostatics 1
2. Electric Field 18
3. Dipole 27
4. Electric Flux 36
5. Electric Potential 45
6. Capacitance 62
7. Current Electricity 101
8. Magnetism 143
q. Magnetism And Matter 175
9. Electro Magnetic Induction 199
10. Electromagnetic Waves 229
11. Alternating Current 233

ELECTROSTATICS

* A branch of physics that studies electric charges at rest.

What is the charge?

* Charge is the property of the body by which it can show its electrical \& magnetic effect.
* It is defined in terms of no. of electrons.

* Mass without charge can be possible for a body, but charge without mass is never possible.
* Mass depends on the frame of reference according to the theory of relativity, but charge is independent of frame of reference. That's why charge is called invariant.

$$
\mathrm{M}=\frac{\mathrm{M}_{0}}{\sqrt{1-\frac{v^{2}}{v^{2}}}}
$$

Charge does not follow this type of equation.

\# Electrostatic Force:

Coulomb's Law:

* Two charges ' q_{1}^{\prime} 'and ' q_{2}^{\prime} kept at distance ' r ' in a medium exert a force ' F ' on each other and the magnitude of the force is given as:

$$
\begin{aligned}
& \mathrm{F}=\frac{1}{4 \pi \varepsilon} \frac{q_{1} q_{2}}{r^{2}} \text { (in any medium) } \\
& \varepsilon=\varepsilon_{0} \varepsilon_{r}
\end{aligned}
$$

where
$\varepsilon=$ Absolute permitivity of medium
$\varepsilon_{0}=$ Aermittivity of free space
$\varepsilon_{r}=$ Relative permittivity

F in air or vacuum

$$
\begin{aligned}
& \mathrm{F}=\frac{1}{4 \pi \mathrm{E}_{0}} \frac{q_{1} q_{2}}{r^{2}}=\frac{\mathrm{K} q_{1} q_{2}}{r^{2}} \\
& \left(\mathrm{~K}=\text { electrostatic constant }=9 \times 10^{9} \mathrm{~N}-\mathrm{m}^{2} / \mathrm{C}^{2}\right)
\end{aligned}
$$

$$
\begin{aligned}
& \overrightarrow{\mathrm{F}}_{12}=\left(\frac{\mathrm{K} q_{1} q_{2}}{r^{2}}\right)(-\hat{r})=-\frac{\mathrm{K} q_{1} q_{2}}{r^{3}}(\vec{r}) \\
& \overrightarrow{\mathrm{F}_{21}}=\frac{\mathrm{K} q_{1} q_{2}}{r^{2}}(\hat{r})=\frac{\mathrm{K} q_{1} q_{2}}{r^{3}}(\vec{r})
\end{aligned}
$$

$\mathbf{F} \propto q_{1} q_{1}$
$\mathrm{F} \propto \frac{1}{r^{2}}$
\Rightarrow

In CGS,
$\mathrm{K}=1$
$K=\frac{1}{4 \pi \varepsilon}$

* According to Coulomb's law, force between 2 charges q_{1} and q_{2} kept at distance r is-

1. \propto to the product of the magnitude of the charges.
2. Inversely \propto to the square of the distance between them.
3. For the direction, like charges repel \& unlike charges attract.
4. This force depends on the medium.

* $q_{1}, q_{2} \rightarrow$ charge

$$
\mathrm{IC}=3 \times 10^{9} \mathrm{esu}
$$

* $r=$ Distance between charges

Unit \rightarrow SI-m, CGS-cm

$$
1 \mathrm{~m}=100 \mathrm{~cm}
$$

* Force

Unit \rightarrow SI-N, CGS-dyne $\quad 1 \mathrm{~N}=10^{5}$ dyne

* $\mathrm{K}=\frac{\mathrm{Fr}{ }^{2}}{q_{1} q_{2}}$

$$
\mathrm{K}=9 \times 10^{9} \frac{\mathrm{Nm}^{2}}{\mathrm{c}^{2}}
$$

$$
\text { Unit } \rightarrow \mathrm{Sl}-\frac{\mathrm{Nm}^{2}}{\mathrm{c}^{2}}
$$

$$
\text { Dimensions- } \frac{\left[\mathrm{MLT}^{-2}\right]\left[\mathrm{L}^{2}\right]}{[\mathrm{AT}]^{2}}=\left[\mathrm{ML}^{3} \mathrm{~T}^{-4} \mathrm{~A}^{-2}\right]
$$

* ε_{0}

$$
\varepsilon_{0}=8.85 \times 10^{-12} \frac{\mathrm{C}^{2}}{\mathrm{Nm}^{2}}
$$

$$
\begin{aligned}
\text { Unit } \rightarrow & \mathrm{SI}-\frac{\mathrm{C}^{2}}{\mathrm{Nm}^{2}} \\
& \text { Dimensions- }\left[\mathrm{M}^{-1} \mathrm{~L}^{-3} \mathrm{~T}^{4} \mathrm{~A}^{2}\right]
\end{aligned}
$$

Ques.:2 Charge particles located at the point $(1,2) \&(2,1)$. Find $\overrightarrow{\mathrm{F}_{12}}$.

Solns.:

$$
\overrightarrow{r_{\mathrm{A}}}=\hat{i}+2 \hat{j} \quad \overrightarrow{r_{\mathrm{B}}}=2 \hat{i}+\hat{j}
$$

$$
\overrightarrow{r_{\mathrm{A}}}+\vec{r}=\overrightarrow{r_{\mathrm{B}}}
$$

$$
\Rightarrow \quad \begin{aligned}
\vec{r} & =(\hat{i}-\hat{j}), \hat{r}=\frac{\hat{i}-\hat{j}}{\sqrt{2}}=\text { (South east) } \\
\overrightarrow{\mathrm{F}_{12}} & =\left(\frac{k q_{1} q_{2}}{r^{2}}\right) \text { (North west) }=-\left(\frac{k q_{1} q_{2}}{r^{2}}\right) \hat{r} \\
|\vec{r}| & =\sqrt{2}
\end{aligned}
$$

Electrostatics
Ques.:All distances in $\mathrm{cm}, q_{1}=2 \mu \mathrm{C}, q_{2}=10 \mu \mathrm{C}$. Find F on charge q_{2}.

Solns.:

$$
\begin{aligned}
\mathrm{F} & =\frac{9 \times 10^{9} \times 2 \times 10^{-6} \times 10 \times 10^{-6}}{\left(5 \times 10^{-2}\right)^{2}} \\
& =9 \times 8=72 \mathrm{~N} \\
\tan \theta & =\frac{3}{4} \\
\mathrm{~F} & =72 \mathrm{~N}, 37^{\circ} \text { w.r.t. horizontal } \\
\mathrm{F} & =72 \mathrm{~N} \\
\vec{r} & =4 \hat{i}+3 \hat{j} \\
\hat{r} & =\frac{4 \hat{i}+3 \hat{j}}{5} \\
\overrightarrow{\mathrm{~F}} & \left.=72\left[\frac{4 \hat{i}+3 \hat{j}}{5}\right] \mathrm{N}\right] \\
\overrightarrow{\mathrm{F}} & =72 \cos 37^{\circ} \hat{i}+72 \sin 37^{\circ} \hat{j} \\
\overrightarrow{\mathrm{~F}} & =\frac{72}{5}[4 \hat{i}+3 \hat{j}] \mathrm{N} .
\end{aligned}
$$

$$
\Rightarrow \quad \mathrm{F}=72 \mathrm{~N}, 37^{\circ} \text { w.r.t. horizontal }
$$

Superposition of Forces:

$\Rightarrow \quad$ Resultant \rightarrow Vector sum.

Superposition of forces means the resultant force on a particle is the vector sum of all the forces acting on it.

Ques.: Net force on (i)A, (ii)B, (iii)C.
Solns.: I.

$$
\mathrm{F}_{\mathrm{AB}}=\frac{k(2 q)(q)}{r^{2}}(\longleftarrow)
$$

$$
\mathrm{F}_{\mathrm{AC}}=\frac{k(2 q)(3 q)}{(2 r)^{2}}
$$

$$
\mathrm{F}_{\mathrm{net}}=\frac{2 k q^{2}}{r^{2}}+\frac{\bigotimes^{3} k q^{2}}{\not 4_{2} r^{2}}(\longleftarrow)
$$

$$
\mathrm{F}_{\mathrm{net}} \text { on point } \mathrm{A}=\frac{k q^{2}}{r^{2}}\left[2+\frac{3}{2}\right] \frac{7}{2} \frac{k q^{2}}{r^{2}}(\longleftarrow)
$$

II.

$$
(\longrightarrow) \mathrm{F}_{\mathrm{AB}}=\frac{2 k q^{2}}{r^{2}}, \mathrm{~F}_{\mathrm{BC}}=\frac{k(q)(3 q)}{r^{2}}(\longleftarrow)
$$

$$
\mathrm{F}_{\mathrm{net}} \text { on point } \mathrm{B}=\frac{-2 k q^{2}}{r^{2}}+\frac{3 k q^{2}}{r^{2}}=\frac{k q^{2}}{r^{2}}(\longleftarrow)
$$

III.

$$
\begin{aligned}
\mathrm{F}_{\mathrm{AC}} & =\frac{3 k q^{2}}{2 r^{2}}(\longrightarrow) \\
\mathrm{F}_{\mathrm{BC}} & =\frac{3 k q^{2}}{r^{2}}(\longrightarrow) \\
\mathrm{F}_{\mathrm{net}} \text { on point } \mathrm{C} & =\frac{3 k q^{2}}{r^{2}} \times \frac{3}{2}=\frac{9 k q^{2}}{2 r^{2}}(\longrightarrow)
\end{aligned}
$$

Ques.:Find net force on $-q(0,0)$?
Solns.:

$$
\begin{aligned}
& \overrightarrow{\mathrm{F}_{\mathrm{BA}}}=\frac{-k q^{2}}{a^{2}} \hat{i} \\
& \overrightarrow{\mathrm{~F}_{\mathrm{BC}}}=\frac{-k q^{2}}{b^{2}} \hat{j} \\
& \overrightarrow{\mathrm{~F}_{\mathrm{net}}}=\frac{k q^{2}}{a^{2}} \hat{i}+\frac{k q^{2}}{b^{2}} \hat{j} \\
& \left|\overrightarrow{\mathrm{~F}_{\text {net }}}\right|=\sqrt{\mathrm{F}_{1}^{2}+\mathrm{F}_{2}^{2}}=\frac{k q^{2}}{a b} \sqrt{a^{2}+b^{2}}
\end{aligned}
$$

Direction \rightarrow at an angle α to x-axis

$$
\tan \alpha=\frac{\mathrm{F}_{2}}{\mathrm{~F}_{1}}=\frac{a^{2}}{b^{2}}
$$

Electrostatics
Ques.:If the force acting on q_{2} is along y-direction find the ratio of the charges $q_{1} \& q_{3}$?

Solns.:

$$
\overrightarrow{\mathrm{F}_{3}}=\frac{k q_{2} q_{3}}{b^{2}} \quad\left(\overrightarrow{\mathrm{~F}_{1}}=\frac{k q_{1} q_{2}}{a^{2}}(-\hat{i})\right)
$$

Along x-direction $=0=\mathrm{F}_{1}+\mathrm{F}_{2} \cos \theta$

$$
\cos \theta=-\frac{\mathrm{F}_{1}}{\mathrm{~F}_{2}}=\frac{a}{b}
$$

$$
\frac{k q_{1} q_{2}}{a^{2}}+\frac{k q_{2}\left(-q_{3}\right)}{b^{2}}\left(\frac{a}{b}\right)=0
$$

$$
\frac{q_{1}}{a^{2}}=\frac{q_{3} a}{b^{3}}
$$

$$
\Rightarrow \quad \frac{q_{1}}{a^{3}}=\frac{q_{3}}{b^{3}}
$$

$$
\Rightarrow \quad \frac{q_{1}}{q_{3}}=\frac{a^{3}}{b^{3}}
$$

Ques.: Three charges of magnitude $5.0 \times 10^{-7} \mathrm{C},-2.5 \times 10^{-7} \mathrm{C}$ and $1 \times 10^{-7} \mathrm{C}$ are fixed at the three corners A, B and C of an equilateral triangle of side 5 cm . Find the electric force on the charge at vertex C due to the rest two.

Solns.:

$$
\begin{aligned}
\mathrm{F}_{\mathrm{AC}} & =\frac{9 \times 10^{9} \times 5 \times 10^{-7} \times 1 \times 10^{-7}}{(0.05)^{2}}=0.18 \mathrm{~N} \\
\mathrm{~F}_{\mathrm{BC}} & =\frac{9 \times 10^{9} \times\left(-2.5 \times 10^{-7}\right) \times 1 \times 10^{-7}}{(0.05)^{2}}=-0.09 \mathrm{~N} \\
\overrightarrow{\mathrm{~F}_{\text {net }}} & =\overrightarrow{\mathrm{F}_{\mathrm{AC}}}+\overrightarrow{\mathrm{F}_{\mathrm{BC}}} \\
\left|\overrightarrow{\mathrm{~F}_{\text {net }}}\right| & =\sqrt{\mathrm{F}_{\mathrm{AC}}^{2}+\mathrm{F}_{\mathrm{BC}}^{2}+2\left(\mathrm{~F}_{\mathrm{AC}}\right)\left(\mathrm{F}_{\mathrm{BC}}\right) \cdot \cos \left(120^{\circ}\right)} \\
& =0.156 \mathrm{~N}
\end{aligned}
$$

Ques.:

Solis.:

$$
\mathrm{F}_{\mathrm{net}}=\mathrm{F}_{1}+\mathrm{F} \sqrt{2}
$$

Ques.: 2 balls of masses m_{1} and m_{2} \& charges $q_{1} \& q_{2}$ are suspended from same point by 2 different threads. Find the relation between $\alpha \& \beta$.
Solis.:

Ques.: Where to place q so that net force on it becomes 0 ?

Solis.: \Rightarrow

$$
\frac{k q \mathrm{Q}_{1}}{x^{2}}=\frac{k q \mathrm{Q}_{2}}{(r-x)^{2}}
$$

$$
\begin{aligned}
\Rightarrow & \frac{\mathrm{Q}_{1}}{x^{2}} & =\frac{\mathrm{Q}_{2}}{(r-x)^{2}} \\
\Rightarrow & \left(\frac{r-x}{x}\right)^{2} & =\frac{\mathrm{Q}_{2}}{\mathrm{Q}_{1}}
\end{aligned}
$$

$$
\Rightarrow
$$

$$
x=\frac{r}{1+\sqrt{\frac{\mathrm{Q}_{2}}{\mathrm{Q}_{1}}}}=\frac{r \sqrt{\mathrm{Q}_{1}}}{\sqrt{\mathrm{Q}_{1}}+\sqrt{\mathrm{Q}_{2}}}
$$

Electrostatics
Ques.: Determine the location at which a small q charge is placed so that net force on it becomes equal to 0 .

Solns.: \Rightarrow

$$
\begin{aligned}
& \text { from } 3 e, x=\frac{10 \mathrm{~cm}}{1+\sqrt{\frac{9 e}{3 e}}}=\frac{10}{\sqrt{3}+1} \mathrm{~cm} \\
& \text { from } 9 e, y=\frac{10}{1+\sqrt{\frac{3 e}{9 e}}}=\frac{10 \sqrt{3}}{\sqrt{3}+1} \mathrm{~cm}
\end{aligned}
$$

Ques:: q = same, $m=$ same, in equilibrium both the particles are at a distance ' r '. Find the
\angle made by the string joined with one of the particle with the vertical?

Solns.:

$\mathrm{T} \sin \theta=\frac{k q^{2}}{r^{2}}$
$\tan \theta=\frac{k q^{2}}{r^{2} m g}$
$\Rightarrow \quad \theta=\tan ^{-1}\left(\frac{k q^{2}}{r^{2} m g}\right)$
$\mathrm{T}=\sqrt{(m g)^{2}+\left(\frac{k g^{2}}{r^{2}}\right)^{2}}$

Ques.:' r ' is eq ${ }^{m}$ distance between particles. If height of the string is halved, what will be new eq ${ }^{m}$ distance r_{1} ?

Solns.:

$$
\tan \theta=\frac{k q^{2}}{r^{2} m g}
$$

$$
\Rightarrow \quad r=\sqrt{\frac{k q^{2}}{m g}}
$$

$$
\begin{aligned}
\tan \theta & =\frac{r / 2}{h} \\
\frac{k q^{2}}{r^{2} m g} & =\frac{r}{2 h}
\end{aligned}
$$

$$
\begin{equation*}
r^{3}=\frac{2 h k q^{2}}{m g} \tag{1}
\end{equation*}
$$

$\tan \theta_{1}=\frac{k q^{2}}{r_{1}^{2} m g}$
$\tan \theta_{1}=\frac{r_{1} / 2}{h / 2}=\frac{r_{1}}{h}=\frac{k q^{2}}{r_{1}^{2} \cdot m g}$

$$
\begin{equation*}
r_{1}^{3}=\frac{h k q^{2}}{m g} \tag{2}
\end{equation*}
$$

From $\mathrm{eq}^{\mathrm{n}}(1) \&(2)$

$$
\begin{array}{ll}
\Rightarrow & r^{3}=2 r_{1}^{3} \\
\Rightarrow & r_{1}^{3}=\frac{r^{3}}{2} \\
\Rightarrow & r_{1}=\frac{r}{2^{1 / 3}}
\end{array}
$$

Electrostatics
Ques.:If the system is taken into a gravity free satellite, then find the tension in the string:

Solns.:

Ques.: 2 identical charged spheres are suspended by 2 strings of equal length. Each string makes an angle θ with the vertical. When suspended in a liquid of density $0.8 \mathrm{~g} / \mathrm{cm}^{3}$, the angle remains the same. What is the dielectric constant of the liquid, $d_{s}=1.6 \mathrm{~g} / \mathrm{ce}$.

Solns.:

$$
\begin{aligned}
\tan \theta & =\frac{\mathrm{F}}{m g} \\
m g^{\prime} & =\text { app. weight }=m g-\mathrm{B} \\
\mathrm{~B} & =\mathrm{V} \int g=\mathrm{V}_{\mathrm{S}} d_{\mathrm{L}} g
\end{aligned}
$$

$\tan \theta=\frac{\mathrm{F}}{m g}$

$$
\frac{\mathrm{F}}{m g}=\frac{\mathrm{F}^{\prime}}{m g^{\prime}}
$$

$$
\begin{aligned}
m g^{\prime} & =m g-\mathrm{B} \\
m g^{\prime} & =\mathrm{V}_{\mathrm{s}} d_{\mathrm{s}} g-\mathrm{V}_{\mathrm{s}} d_{\mathrm{L}} g \\
& =\mathrm{V}_{\mathrm{s}}\left(d_{\mathrm{s}}-d_{\mathrm{L}}\right) g
\end{aligned}
$$

We know,

$$
\mathbf{F}=\frac{1}{4 \pi \varepsilon_{0} \varepsilon_{r}} \frac{q_{1} q_{2}}{r^{2}}
$$

$$
\mathrm{F}^{\prime}=\frac{\mathrm{F}}{\varepsilon_{r}}
$$

$$
\begin{array}{r}
\frac{\mathrm{F}}{\mathrm{~V}_{s} d_{s} g}=\frac{\mathrm{F}}{\varepsilon_{r}\left(\mathrm{~V}_{s}\right)\left(d_{s}-d_{\mathrm{L}}\right) g} \\
\varepsilon_{r}=\frac{d_{s}}{d_{\mathrm{S}}-d_{\mathrm{L}}}=2
\end{array}
$$

Ques.:4 identical particles are kept at the vertices of a square $5^{\text {th }}$ particle of charge Q is placed at a height ' h ' from the centre of the square. Find the net force on it, if the side of the square is ' a '?

Solns.: \Rightarrow

$$
\begin{aligned}
r^{2} & =\frac{a^{2}}{2}+h^{2} \\
r & =\sqrt{\frac{a^{2}}{2}+h^{2}} \\
\tan \theta & =\frac{h \sqrt{2}}{a}=\frac{\sqrt{2} h}{a}=\frac{h \sqrt{2}}{a}
\end{aligned}
$$

$$
\mathrm{F}_{\mathrm{net}}=4 \mathrm{~F} \sin \theta
$$

[Horizontal camponent cancel, vertical component add]

$$
\mathrm{F}_{\mathrm{net}}=\frac{4 \times k q \mathrm{Q}}{\left(\frac{a^{2}}{2}+h^{2}\right)} \times \frac{h}{\left(\sqrt{\frac{a^{2}}{2}+h^{2}}\right)}=\frac{4 h k q \mathrm{Q}}{\left(\frac{a^{2}}{2}+h^{2}\right)^{3 / 2}}
$$

$$
\left.\left\lvert\, \because \sin \theta=\frac{h}{\sqrt{\frac{a^{2}}{2}+h^{2}}}\right.\right)
$$

For equilibrium,
$4 \mathrm{~F} \sin \theta=m g$

$$
m=\frac{4 \mathrm{~F} \sin \theta}{g}=\frac{4 k \mathrm{Q} q h}{\left(h^{2}+\frac{a^{2}}{2}\right)^{3 / 2} g}
$$

For the Equilibrium of System:

1. Position of charge.
2. Nature \& magnitude of the charge.

1. Position of Charge:

Ques.:Find the position of the charge Q for which, system will be equilibrium?

$$
\frac{k q_{1} \mathrm{Q}}{x^{2}}=\frac{k \mathrm{Q} q_{2}}{y^{2}}
$$

Solis.:

$$
\begin{aligned}
& \frac{x}{y}=\sqrt{\frac{q_{1}}{q_{2}}} \\
& \Rightarrow \quad \begin{aligned}
x+y & =r
\end{aligned} \\
& x\left.=\frac{r}{1+\sqrt{\frac{q_{2}}{q_{1}}}}=\frac{r \sqrt{q_{1}}}{\sqrt{q_{1}}+\sqrt{q_{2}}} \text { (from } q_{1}\right) \\
& y\left.=\frac{r}{1+\sqrt{\frac{q_{1}}{q_{2}}}}=\frac{r \sqrt{q_{2}}}{\sqrt{q_{1}}+\sqrt{q_{2}}} \text { (from } q_{2}\right)
\end{aligned}
$$

Ques.: Find the position of the $3^{\text {rd }}$ charge at which it will be in equilibrium.

Solis.: \Rightarrow

$$
\begin{aligned}
x & =\frac{r}{1+\sqrt{3}} \\
y & =\frac{r}{1+\frac{1}{\sqrt{3}}} \\
& =\frac{r \sqrt{3}}{\sqrt{3}+1}
\end{aligned}
$$

Ques.:Find the distance from $20 \mu \mathrm{C}$ so that net force on the particle kept at the point will be equal to 0 .

Solns.:

$$
\begin{aligned}
& x=\frac{r}{1+\sqrt{\frac{q_{2}}{q_{1}}}}=\frac{r}{1+\sqrt{\frac{80}{20}}}=\frac{r}{3} \\
& x=\frac{100}{3}=33 \mathrm{~cm}
\end{aligned}
$$

2. Nature and Magnitude of Charge:

To calculate-Magnitude of the charge so that system will be in equilibrium.
We must apply net force $=0$, on any other charge in the system.

Ques.:2 identical charges are kept at distance 'r'. Find the nature \& magnitude of the $3^{\text {rd }}$ charge placed at midpoint so that the system remains in equilibrium.

Solns.:

$$
\frac{k q \mathrm{Q}}{(r / 2)^{2}}+\frac{k q q}{r^{2}}=0
$$

$$
\frac{4 k \mathrm{Q} q}{r^{2}}+\frac{k q q}{r^{2}}=0
$$

$$
\Rightarrow \quad \frac{k q}{r^{2}}[4 \mathrm{Q}+q]=0
$$

$$
\mathrm{Q}=\frac{-q}{4}
$$

Ques.: Two charges q and $4 q$ are kept at distance r. Find the nature and magnitude of the $3^{\text {rd }}$ charge placed between them so that the system remains in equilibrium.

Solns.: \Rightarrow

$$
\begin{aligned}
x & =\frac{r}{1+2}=\frac{r}{3} \\
y & =\frac{2 r}{3} \\
\frac{k q(4 q)}{r^{2}}+\frac{k(4 q)(\mathrm{Q}) \times 9}{(2 r)^{2}} & =0
\end{aligned}
$$

Electrostatics

$$
\Rightarrow \quad \begin{aligned}
\frac{k q}{r^{2}}\left(4 q+\frac{A \mathrm{Q} \times 9}{A}\right) & =0 \\
4 q+9 \mathrm{Q} & =0 \\
\mathrm{Q} & =\frac{-4}{9} q
\end{aligned}
$$

$$
\begin{array}{rlrl}
& & \frac{k q \mathrm{Q}}{\left(\frac{r}{3}\right)^{2}}+\frac{k q(4 q)}{r^{2}} & =0 \\
\Rightarrow & \frac{9 k q(4 q)}{r^{2}}+\frac{4 k q q}{r^{2}} & =0 \\
\Rightarrow & \frac{k q}{r^{2}}[9 \mathrm{Q}+4 q] & =0 \\
\Rightarrow & & \mathrm{Q}=-\frac{-4 q}{9}
\end{array}
$$

Ques.:Magnitude, so that system is in equilibrium.

Solns.:

$$
\begin{aligned}
r & =\frac{a}{\sqrt{3}} \\
\mathrm{~F}_{\mathrm{R}} & =\sqrt{\mathrm{F}^{2}+\mathrm{F}^{2}+2 \mathrm{~F}^{2} \cos 60^{\circ}} \\
& =\sqrt{3 \mathrm{~F}^{2}}=\mathrm{F} \sqrt{3}
\end{aligned}
$$

