

NEET - UG

NATIONAL TESTING AGENCY

Physics

Volume - 2

Contents

1. Gravitation 1
2. Mechanical Properties of Solids 20
3. Mechanical Properties of Fluids 34
4. Wave Motion 71
5. Sound Wave 110
6. Thermal Expansion 143
7. Thermodynamics 792

GRAVITATION

\# Newton's Law of Gravitation:

* It states that every particle in the universe attracts all other particles with a force which is proportional to the product of their masses and inversely proportional to the square of the distance between them.

$$
\begin{aligned}
& \mathrm{F} \propto m_{1} m_{2} \\
& \left.\mathrm{~F} \propto \frac{1}{r^{2}}\right] \quad \mathrm{F} \propto \frac{m_{1} m_{2}}{r^{2}} \\
& \mathrm{~F}=\frac{\mathrm{G} m_{1} m_{2}}{r^{2}} \quad \mathrm{G}
\end{aligned}=\text { Gravitational constant } \quad \begin{aligned}
\mathrm{G} & =6.67 \times 10^{-11} \frac{\mathrm{Nm}^{2}}{\mathrm{~kg}^{2}} \\
\vec{r} & =\text { Position vector of } m_{2}^{\prime} \mathrm{wr.t.t}^{\prime} m_{1}^{\prime} \text { '. }
\end{aligned}
$$

$$
\begin{aligned}
& \left|\overrightarrow{\mathrm{F}_{1}}\right|=\left|\overrightarrow{\mathrm{F}_{2}}\right|=\mathrm{F}=\frac{\mathrm{G} m_{1} m_{2}}{r^{2}} \\
& \overrightarrow{\mathrm{~F}_{21}}=\left(\frac{\mathrm{G} m_{1} m_{2}}{r^{2}}\right)(-\hat{r}) \\
& \overrightarrow{\mathrm{F}_{21}}=\frac{-\mathrm{G} m_{1} m_{2}}{r^{3}} \vec{r} \\
& \overrightarrow{\mathrm{~F}_{12}}=\frac{\mathrm{G} m_{1} m_{2}}{r^{3}} \vec{r}
\end{aligned}
$$

$$
\mathrm{F} \neq \frac{\mathrm{GM} m}{\left(r+\frac{\mathrm{L}}{2}\right)^{2}} \quad \because \quad \mathrm{~L} \rightarrow m
$$

$$
d \mathrm{~F}=\frac{\mathrm{GM} \cdot d m}{x^{2}} \mathrm{~L} \rightarrow \frac{\mathrm{M}}{\mathrm{~L}} d x=d m
$$

$$
\mathrm{F}=\int_{r}^{(r+\mathrm{L})} \frac{\mathrm{G} m}{x^{2}} \frac{\mathrm{M}}{\mathrm{~L}} d x=\frac{\mathrm{GM} m}{\mathrm{~L}} \int_{r}^{(r+\mathrm{L})} \frac{d x}{x^{2}}
$$

$$
\mathrm{F}=\frac{\mathrm{GM} m}{\mathrm{~L}}\left[\frac{-1}{x}\right]_{r}^{r+\mathrm{L}}=\frac{\mathrm{GM} m}{\mathrm{~L}}\left[\frac{1}{r}-\frac{1}{(r-\mathrm{L})}\right]
$$

$$
\mathrm{F}=\frac{\mathrm{GM} m}{\mathrm{~L}}\left[\frac{r+\mathrm{L}-r}{r(r+\mathrm{L})}\right]=\frac{\mathrm{GM} m}{r(r+\mathrm{L})}
$$

Ques.: Three masses, each equal to m are placed at three corners of a square of side a. Calculate the force of attraction on the mass placed at fourth corner.

Solns.:

$$
\begin{aligned}
\mathrm{F} & =\frac{\mathrm{G} m m}{a^{2}} \\
\mathrm{~F}^{\prime} & =\frac{\mathrm{G} m m}{(\sqrt{2 a})^{2}} \\
\mathrm{~F} & =2 \mathrm{~F}+\mathrm{F}^{\prime}
\end{aligned}
$$

Ques.:

$$
\tan \theta=\frac{\mathrm{F}}{m g}=\frac{\mathrm{G} \not \sum_{1} m_{2}}{\left(r^{\prime}\right)^{2} \times \not \eta_{1} \times g}=\frac{\mathrm{G} m_{2}}{\left(r^{\prime}\right)^{2} \times g}
$$

Ques.: 2 particles, each of mass m goes around in a circular motion their mutual gravitational attraction. Find the value of speed with which particle is doing circular motion.

Solns:

$$
\begin{aligned}
\mathrm{F} & =\frac{\mathrm{G} m^{2}}{r^{2}} \\
\frac{\mathrm{M} 1 \times v^{2}}{r} & =\frac{\mathrm{G} m^{\chi}}{(2 r)^{2}} \\
v^{2} & =\frac{\mathrm{G} m}{4 r} \Rightarrow \frac{1}{2} \sqrt{\frac{\mathrm{G} m}{r}}=v
\end{aligned}
$$

\# Gravitational Field:

* It is region in surrounding of mass where if any other mass comes, it experiences gravitational force.

Gravitation

$$
\begin{aligned}
g & =\frac{\mathrm{G} m}{r^{2}} \\
d g & =\frac{\mathrm{G} d m}{\left(x^{2}+\mathrm{R}^{2}\right)} \\
g_{p} & =\int d g \cos \theta \\
g_{p} & =\int \frac{\mathrm{G} d m}{\mathrm{R}^{2}+x^{2}} \cdot \frac{x}{\left(x^{2}+\mathrm{R}^{2}\right)^{1 / 2}}=\frac{\mathrm{G} x}{\left(\mathrm{R}^{2}+x^{2}\right)^{3 / 2}}(m) \\
g_{p} & =\frac{\mathrm{G} m x}{\left(\mathrm{R}^{2}+x^{2}\right)^{3 / 2}}
\end{aligned}
$$

Sphere:

Case-1: Hollow Sphere:

$$
\begin{aligned}
& x>\mathrm{R} \text { (outside) } \\
& g_{p}=\frac{\mathrm{G} m}{x^{2}}
\end{aligned}
$$

2.
3.

$$
x=\mathrm{R} \text { (surface) }
$$

$$
g_{s}=\frac{\mathrm{G} m}{\mathrm{R}^{2}}
$$

$$
\begin{aligned}
x & <\mathrm{R} \text { (inside) } \\
g_{\text {in }} & =0
\end{aligned}
$$

Case-2: Solid Sphere:

1.

$$
\begin{aligned}
x & >\mathrm{R} \\
g_{p} & =\frac{\mathrm{G} m}{x^{2}}
\end{aligned}
$$

2.

$$
\begin{aligned}
x & =\mathrm{R} \\
g_{s} & =\frac{\mathrm{G} m}{\mathrm{R}^{2}}
\end{aligned}
$$

3.

$$
\begin{aligned}
x & <\mathrm{R} \\
g_{\text {in }} & =\frac{\mathrm{G} m x}{\mathrm{R}^{3}} \Rightarrow g m \propto x
\end{aligned}
$$

Earth:
I.

$$
g_{s}=\frac{\mathrm{GMe}}{\mathrm{R}_{e}{ }^{2}}
$$

$$
g_{s}(\text { according to gravity })=9.8 \mathrm{~m} / \mathrm{s}^{2}
$$

II.

$$
\Rightarrow
$$

$$
\begin{aligned}
g_{p} & =\frac{\mathrm{GM}_{e}}{\left(\mathrm{R}_{e}+h\right)^{2}} \\
g_{p} & =\frac{\mathrm{GM}_{e}}{\mathrm{R}_{e}^{2}\left(1+\frac{h}{\mathrm{R}_{e}}\right)^{2}} \\
g_{p} & =\frac{g_{s}}{\left(1+\frac{h}{\mathrm{R}_{e}}\right)^{2}} \\
(1+x)^{n} & =\mathbb{1}+n x \text { if } h \ll \mathrm{R}_{e} \\
g_{p} & =g_{s}\left(1+\frac{h}{\mathrm{R}_{e}}\right)^{-2}
\end{aligned}
$$

$$
\because \quad \frac{h}{\mathrm{R}_{e}} \lll 1
$$

$$
\Rightarrow
$$

$$
g_{p}=g_{s}\left(1-\frac{2 h}{\mathrm{R}}\right)
$$

III.

$$
\begin{aligned}
& g_{\text {in }}=\frac{\mathrm{G} \cdot \mathrm{M}_{e} \cdot x}{\mathrm{R}_{e}{ }^{3}} \\
& x=\mathrm{R}_{e}-d \\
& g_{\text {in }}=\frac{\mathrm{GM}_{e}\left(\mathrm{R}_{e}-d\right)}{\mathrm{R}_{e}{ }^{2} \cdot\left(\mathrm{R}_{e}\right)}=g_{s}\left(1-\frac{d}{\mathrm{R}_{e}}\right) \\
& g_{\text {in }}=g_{\mathrm{s}}\left(1-\frac{d}{\mathrm{R}_{e}}\right)
\end{aligned}
$$

Sanitation

Effect of Rotation of Earth on the Value of g :

$$
\mathrm{N}+m \omega^{2} \mathbf{R}_{\mathrm{e}} \sin ^{2} \alpha=\mathrm{M} g_{\mathrm{s}}
$$

$$
m g_{\text {eff }}=\mathrm{N}=m g_{\mathrm{s}}-m \omega^{2} \mathrm{R}_{e} \sin ^{2} \alpha
$$

$g_{\text {eff }}=g_{s}-\omega^{2} \mathrm{R}_{e} \sin ^{2} \alpha$
At equator,

$$
\alpha=90^{\circ}
$$

$$
\therefore \quad g_{\text {eff }}=g_{s}-\omega^{2} \cdot \mathrm{R}_{e}\left(9.6 \mathrm{~m} / \mathrm{s}^{2}\right)
$$

At poles

$$
\alpha=0^{\circ}
$$

\therefore

$$
g_{\text {eff }}=g_{s}\left(9.8 \mathrm{~m} / \mathrm{s}^{2}\right)
$$

$$
g_{e}=g_{m}
$$

$$
\begin{aligned}
\frac{\mathrm{GM}_{e}}{x^{2}} & =\frac{\mathrm{GM} m}{(r-x)^{2}} \\
x & =\ldots \ldots \ldots
\end{aligned}
$$

$$
(1+x)^{n}=1+n x
$$

$$
\begin{aligned}
x & \lll 1 \\
g_{\text {big }} & -g_{\text {small }} \\
& =\frac{\mathrm{GM}}{y^{2}}-\frac{\mathrm{GM}}{8 d^{2}} \\
g_{s} & =\frac{\mathrm{GM}_{e}}{\mathrm{R}_{e}^{2}}
\end{aligned}
$$

If radius of earth shrinks by 1% mass remains same.

$$
\begin{aligned}
g^{\prime} & =\frac{\mathrm{GM}_{e}}{\left(0.99 \mathrm{R}_{e}\right)^{2}}=\frac{\mathrm{GM}_{e}}{\mathrm{R}_{e}^{2}\left(0.99^{2}\right)} \\
g^{\prime} & =\frac{g_{s}}{(1-0.01)^{2}}=g_{s}(1-0.01)^{-2} \\
g^{\prime} & =g_{s}(1+0.02)=g_{s}(1.02) \\
g^{\prime} & =g_{s}\left(\frac{102}{100}\right)
\end{aligned}
$$

Ques.:At what height above the earth's surface value of gravitationla force will be half of its value at the surface of the earth?

Solns.:

$$
\begin{aligned}
g_{s} & =\frac{\mathrm{GM}_{e}}{\mathrm{R}_{e}^{2}} \\
\frac{g_{s}}{2} & =g_{p}=\frac{g_{s}}{\left(1+\frac{h}{\mathrm{R}_{e}}\right)^{2}} \\
\sqrt{2} & =1+\frac{h}{\mathrm{R}_{e}} \\
h & =(\sqrt{2}-1) \mathrm{R}_{e}
\end{aligned}
$$

Ques.: With what angular velocity earth will rotate so that app. value of g at its equator becomes 0?
Solns.:

$$
\begin{aligned}
& g_{\text {eff }}=g_{s} \text { (at surface) } \\
& g_{\text {eff }}=g_{s}-\omega^{2} \mathrm{R}_{e} \sin ^{2} \alpha \\
& g_{s}-\omega^{2} \mathrm{R}_{e}=0 \\
& \Rightarrow \quad 1\left(\because \quad \text { at equator } \alpha=90^{\circ}\right) \\
& \Rightarrow \quad=\sqrt{\frac{g}{\mathrm{R}_{e}}}
\end{aligned}
$$

\# Gravitational Potential Energy or Gravitational Interaction Energy:

* Defined as the amount of work required to bring the particle from infinity to desired.

Case-l:

$$
\mathrm{U}=\frac{-\mathrm{G} m_{1} m_{2}}{r} \quad \underset{m_{1}}{r} \longleftrightarrow r \quad r \quad \longrightarrow m_{2}
$$

$6 \mid$

Gravitation
Cose-II:

Multiple particle system:

$$
\begin{aligned}
\mathrm{U}= & \frac{-\mathrm{G} m_{1} m_{2}}{r_{12}} \frac{-\mathrm{G} m_{2} m_{3}}{r_{23}} \frac{-\mathrm{G} m_{3} m_{1}}{r_{13}} \\
\mathrm{U}= & \frac{-\mathrm{G} m_{1} m_{4}}{a} \frac{-\mathrm{G} m_{1} m_{2}}{\sqrt{2} a} \frac{-\mathrm{G} m_{2} m_{3}}{\sqrt{2} a} \\
& \frac{-\mathrm{G} m_{4} m_{3}}{a} \frac{-\mathrm{G} m_{1} m_{3}}{\sqrt{2} a} \frac{-\mathrm{G} m_{2} m_{4}}{\sqrt{2} a}
\end{aligned}
$$

Ques.:Find W done in \uparrow sing the sides of triangle form d to $2 d$?

Solns::

$$
\mathrm{W}=\mathrm{U}_{f}-\mathrm{U}_{i}
$$

$$
\mathrm{U}_{i}=\frac{-\mathrm{G} m^{2}}{d}-\frac{\mathrm{G} m^{2}}{d}-\frac{\mathrm{G} m^{2}}{d}=\frac{-3 \mathrm{G} m^{2}}{d}
$$

$$
\mathrm{U}_{f}=\frac{-3 \mathrm{Gm}^{2}}{2 d}
$$

$$
\text { Work done }=\frac{-3 \mathrm{Gm}^{2}}{2 d}+\frac{3 \mathrm{Gm}^{2}}{d}=\frac{-3 \mathrm{G} m^{2}+6 \mathrm{G} m^{2}}{2 d}
$$

$$
\text { Work done }=\frac{3 \mathrm{G} m^{2}}{2 d}
$$

Ques.:Find the velocity of $m_{1} \& m_{2}$ when the separation between them becomes d.
m_{1}
\cdot
(rest)

$$
\begin{aligned}
& v_{1} \longrightarrow \infty \longleftarrow v_{2} \\
& m_{1} \longleftarrow d \longrightarrow m_{2}
\end{aligned}
$$

$$
\mathrm{U}_{f}=\frac{-\mathrm{G} m_{1} m_{2}}{d}, \mathrm{U}_{i}=0, \mathrm{~K}_{i}=0
$$

$$
\mathrm{E}_{i}=0
$$

$$
\begin{equation*}
\mathrm{E}_{f}=\frac{1}{2} m_{1} v_{1}^{2}+\frac{1}{2} m_{2} v_{2}^{2}-\frac{\mathrm{G} m_{1} m_{2}}{d}=0 \tag{1}
\end{equation*}
$$

$\begin{array}{rlr} & \because & \mathbf{E}_{i}\end{array}=\mathrm{E}_{f}$

$$
\begin{aligned}
0+0 & =m_{1} v_{1}-m_{2} v_{2} \\
m_{1} v_{1} & =m_{2} \cdot v_{2}
\end{aligned}
$$

$$
\Rightarrow \quad v_{1}=\frac{m_{1} m_{2}}{m_{1}}
$$

$$
\frac{1}{2} m_{1}\left(\frac{m_{2}^{\not 又} v_{2}^{2}}{m_{1}^{2}}\right)+\frac{1}{2} \not \hbar_{2} v_{2}^{2}-\frac{\mathrm{G} m_{1} \not \hbar_{2}}{d}=0
$$

$$
\frac{1}{2} \frac{m_{2} v_{2}^{2}}{m_{1}}+\frac{1}{2} v_{2}^{2}=\frac{\mathrm{G} m_{1}}{d}
$$

$$
\Rightarrow \quad v_{2}^{2}=\frac{2 \mathrm{G} m_{1}}{d\left(\frac{m_{2}+m_{1}}{m_{1}}\right)}
$$

$$
\begin{array}{rlrl}
v_{2} & =\sqrt{\frac{2 \mathrm{G} m_{1}^{2}}{d\left(m_{2}+m_{1}\right)}}=m_{1} \sqrt{\frac{2 \mathrm{G}}{d\left(m_{2}+m_{1}\right)}} \\
v_{1} & =m_{2} \sqrt{\frac{2 \mathrm{G}}{d\left(m_{2}+m_{1}\right)}} \\
\Rightarrow & 0 & =\frac{1}{2} m_{1} v_{1}^{2}-\frac{\mathrm{G} m_{1} m_{2}}{d} \\
\Rightarrow & \frac{1}{2} v_{1}^{2} & =\frac{\mathrm{G} m_{2}}{d} \\
v_{1} & =\sqrt{\frac{2 \mathrm{G} m_{2}}{d}}
\end{array}
$$

\# Gravitational Potential:

* W done in bringing a unit mass from ∞ to the given location.

Interactional Energy of Unit Mass:

$$
\begin{aligned}
m_{0} & \rightarrow \mathrm{U} \\
1 & \rightarrow \frac{\mathrm{U}}{m_{0}}=\mathrm{V}_{p} \\
\mathrm{~V}_{p} & =\frac{\mathrm{G} m m_{0}}{r m_{0}}=\frac{-\mathrm{G} m}{r}
\end{aligned}
$$

Gravitation
\# Ring:

$$
\begin{aligned}
d \mathrm{~V} & =\frac{-\mathrm{G} \cdot d m}{\mathrm{R}} \\
\mathrm{~V} & =\int d \mathrm{~V}=\frac{-\mathrm{G} m}{\mathrm{R}} \\
d \mathrm{~V} & =\frac{-\mathrm{G} d m}{\sqrt{\mathrm{R}^{2}+x^{2}}} \\
\int d \mathrm{~V}=\mathrm{V} & =\frac{-\mathrm{G} m}{\sqrt{\mathrm{R}^{2}+x^{2}}}
\end{aligned}
$$

\# Hollow Sphere:

\# Solid Sphere:

(i) $\quad x>\mathrm{R}, \mathrm{V}_{p}=\frac{-\mathrm{G} m}{x}$
(ii) $\quad x=\mathrm{R}, \mathrm{V}_{p}=\frac{-\mathrm{G} m}{\mathrm{R}}$
(iii) $x=\mathrm{R}, \mathrm{V} p=\frac{-\mathrm{G} m}{\mathrm{R}}$

(i) $x>\mathrm{R}, \mathrm{V}_{p}=\frac{-\mathrm{G} m}{x}$
(ii) $x=\mathrm{R}, \mathrm{V}_{p}=\frac{-\mathrm{G} m}{\mathrm{R}}=\mathrm{V}_{s} \frac{-3 \mathrm{GM}}{2 \mathrm{R}}+\frac{-\mathrm{GM}}{\mathrm{R}}$
(iii) $x<\mathrm{R}, \mathrm{V}_{p}=\frac{-\mathrm{G} m\left(3 \mathrm{R}^{2}-x^{2}\right)}{2 \mathrm{R}^{3}}$
(iv) $x=0, \mathrm{~V}_{p}=\frac{-3}{2} \frac{\mathrm{G} m}{\mathrm{R}}=\frac{-3}{2} \mathrm{~V}_{s}$

Golden Key Point:

$$
\begin{aligned}
& \Rightarrow \\
& \mathrm{V}=\frac{\mathrm{U}}{m} \\
& \mathrm{U}=m \mathrm{~V} \\
& \mathrm{U}_{p}=m_{2} \mathrm{~V}_{p} \\
& \mathrm{U}_{p}=m_{2}\left[\frac{-\mathrm{G} m_{1}}{r} \frac{-\mathrm{G} m_{3}}{r}\right]
\end{aligned}
$$

\# Potential Energy of a Body in Earth's Gravitational Field:

$$
\Rightarrow \quad \mathrm{U}_{p}=m\left[\frac{-\mathrm{GM}}{\mathrm{Re}+h}\right]
$$

$$
\begin{aligned}
& \mathrm{V}=\frac{\mathrm{U}}{m} \\
& \mathrm{U}=m \mathrm{~V} \\
& \mathrm{U}_{s}=m \mathrm{~V}_{s}=m\left(\frac{-\mathrm{GM}}{\mathrm{R}_{e}}\right)=\frac{-\mathrm{GM} m}{\mathrm{R}_{e}} \\
& \mathrm{U}_{p}=m \mathrm{~V}_{p} \\
& \mathrm{U}_{p}=m\left[\frac{-\mathrm{GM}}{\mathrm{Re}+h}\right] \\
& \mathrm{U}_{\mathrm{Q}}=\mathrm{U}_{\mathrm{in}}=m\left[\frac{-\mathrm{GM}}{2 \mathrm{R}^{3}}\left(3 \mathrm{R}^{2}-x^{2}\right)\right] \\
& x=\mathrm{R}_{e}-h
\end{aligned}
$$

Find the velocity of particle when it just crosses the centre.

$$
\begin{aligned}
& \Rightarrow \\
& \frac{-\mathrm{G} m}{2 \mathrm{R}}=\frac{-3 \mathrm{G} m}{\not 2 \mathrm{R}}+\frac{\mathrm{V}^{2}}{\not 2} \\
&=m \mathrm{~V}_{\mathrm{C}}+\frac{1}{2} m \mathrm{~V}^{2} \\
& \mathrm{~V}^{2}=\frac{-\mathrm{G} m}{\mathrm{R}}+\frac{3 \mathrm{G} m}{\mathrm{R}}=\frac{2 \mathrm{G} m}{\mathrm{R}} \\
& \Rightarrow \quad \mathrm{~V}=\sqrt{\frac{2 \mathrm{G} m}{\mathrm{R}}}
\end{aligned}
$$

gravitation
Ques.: Find out the work done in shifting from P to Q ?
Solns.:

$$
\mathrm{Q} \dot{j}^{h}
$$

$$
\begin{array}{ll}
\Rightarrow & \mathrm{U}_{f}=\frac{-\mathrm{GM} m}{\mathrm{R}+2 h}, \mathrm{U}_{i}=\frac{-\mathrm{GM} m}{\mathrm{R}+h} \\
\Rightarrow & \mathrm{~W}=\mathrm{U}_{f}-\mathrm{U}_{i} \\
\Rightarrow & \mathrm{~W}=\frac{-\mathrm{GM} m}{\mathrm{R}+2 h}+\frac{\mathrm{GM} m}{\mathrm{R}+h} \\
\mathrm{~W}=\mathrm{GM} m\left(\frac{-\mathrm{R}-h+\mathbb{R}+2 h}{(\mathrm{R}+2 h)(\mathrm{R}+h)}\right)
\end{array}
$$

$$
=\frac{\mathrm{GM} m h}{\left(\mathrm{R}^{2}+3 \mathrm{R} h+2 h^{2}\right)}
$$

Ques.:If a particle is projected from the surface of earth with velocity V_{0}, find the maximum height to which the particle will rise?
Solns.:

$$
\begin{aligned}
& \Rightarrow \quad \frac{1}{2} m \mathrm{~V}_{0}^{2} \frac{-\mathrm{GM} \not m^{\prime}}{\mathrm{R}}=\frac{-\mathrm{GM} \not \mathrm{~V}_{f_{0}}=0}{\mathrm{R}+h} \\
& \frac{1}{2} \mathrm{~V}_{0}^{2}=\mathrm{GM}\left(\frac{-\mathrm{R}+\mathrm{R}^{\prime}+h}{\mathrm{R}^{2}+\mathrm{R} h}\right)=\frac{\mathrm{GM} h}{\left(\mathrm{R}^{2}+\mathrm{R} h\right)} \\
& \mathrm{V}_{0}=\sqrt{\frac{2 \mathrm{GM} h}{\mathrm{R}^{2}+\mathrm{R} h}}
\end{aligned}
$$

Ques.:From the centre of ring, a point mass is projected such that it will escape to infinity. Find out that velocity?

Solns.:

\Rightarrow

$$
\begin{aligned}
\varepsilon_{1} & =\mathrm{K}+\mathrm{P} \\
& =\frac{1}{2} m \mathrm{~V}^{2}+m\left(\mathrm{~V}_{i}\right)=0 \\
& =\frac{1}{2} m \mathrm{~V}^{2}+m\left(\frac{-\mathrm{G} m}{\mathrm{R}}\right)=0 \\
\mathrm{~V} & =\sqrt{\frac{\mathrm{G} m}{\mathrm{R}}}
\end{aligned}
$$

Satellite:

$$
\begin{aligned}
r & \rightarrow \text { orbital radius } \\
\mathrm{V} & \rightarrow \text { orbital speed } \\
\mathrm{F}_{g} & =\frac{m \mathrm{~V}_{0}^{2}}{r} \\
\frac{\mathrm{GM} m}{r^{2}} & =\frac{-m \mathrm{~V}_{0}^{2}}{r} \\
\mathrm{~V}_{0} & =\sqrt{\frac{\mathrm{GM}}{r}}
\end{aligned}
$$

Note: It is independent of the mass of the satellite.

Orbital Period:

$$
\mathrm{T}=\frac{2 \pi}{\omega}=\frac{2 \pi r}{\mathrm{~V}}=\frac{2 \pi \cdot r^{3 / 2}}{\sqrt{\mathrm{GM}}}
$$

\Rightarrow
$\mathrm{T} \propto r^{3 / 2}$
(Kepler laws)
\# Energy of Satellite:
KE of satellite;

$$
\begin{aligned}
\mathrm{K} & =\frac{1}{2} m \mathrm{~V}_{0}^{2}=\frac{1}{2} \frac{m \mathrm{GM}}{r} \\
\mathrm{~K} & =\frac{\mathrm{GM} m}{2 r} \\
\mathrm{PE} \text { of sat. }=\mathrm{P} & =\frac{-\mathrm{GM} m}{r} \\
\text { Total energy }=\mathrm{E}_{\mathrm{T}} & =\frac{-\mathrm{GM} m}{2 r} \\
\left|\mathrm{E}_{\mathrm{T}}\right| & =|\mathrm{KE}|=\frac{1}{2}|\mathrm{PE}|
\end{aligned}
$$

Gravitation
Ques.:A satellite is revolving around earth in orbital radius in $4 \mathrm{R}_{\mathrm{e}}$. Find its orbital speed \& time period?

Solns.: \Rightarrow

$$
\begin{aligned}
\mathrm{V}_{0} & =\sqrt{\frac{\mathrm{GM}}{r}}=\sqrt{\frac{g r^{2}}{4 \mathrm{Re}}} \\
& =\sqrt{\frac{g \mathrm{R}_{e} \times \mathrm{R}_{e}}{4 \mathrm{R}_{e}}}=\sqrt{\frac{g \mathrm{R}_{e}}{4}} \\
\mathrm{~V}_{0} & =\frac{1}{2} \sqrt{\mathrm{GR}_{e}}
\end{aligned}
$$

Time period: $\frac{2 \pi\left(4 \times \mathrm{R}_{e}\right)^{3 / 2}}{\sqrt{g \mathrm{R}_{e}{ }^{2}}}=\frac{2 \pi\left(4 \mathrm{R}_{e}\right)^{3 / 2}}{\sqrt{g \mathrm{R}_{e}{ }^{2}}}$

$$
=16 \pi \sqrt{\frac{\mathrm{R}_{e}}{g}}
$$

Ques.: Two satellites A \& B of same mass are orbiting around earth at altitudes R \& 3R. Calculate the ratio of $K E$ of $A \& B$?

Solns.: \Rightarrow

$$
\begin{aligned}
\mathrm{KE}_{\mathrm{A}} & =\frac{\mathrm{GMm}}{\mathrm{R}+\mathrm{Re}} \\
\mathrm{KE}_{\mathrm{B}} & =\frac{\mathrm{GMm}}{3 \mathrm{R}+\mathrm{Re}} \\
\frac{\mathrm{KE}_{\mathrm{A}}}{\mathrm{KE}_{\mathrm{B}}} & =\frac{3 \mathrm{R}+\mathrm{Re}}{\mathrm{R}+\mathrm{Re}}=\frac{4 \mathrm{R}}{2 \mathrm{R}}=\frac{2}{1}
\end{aligned}
$$

$$
\Rightarrow \quad 2: 1
$$

Ques.:A satellite of mass $2 \times 10^{3} \mathrm{~kg}$ is to be shifted from an orbit of radius 2 Re to 3 Re . Find out the minimum energy required to shift?
Solns.: \Rightarrow

$$
\begin{aligned}
\mathrm{E} & =\frac{-\mathrm{GM} m}{2 \times 2 \mathrm{R}_{e}}+\frac{\mathrm{GM} m}{6 \mathrm{R}_{e}} \\
& =+\mathrm{GM} m\left[\frac{-3+2}{12 \mathrm{R}_{e}}\right] \\
\mathrm{E} & =\frac{-\mathrm{GM} m}{12 \mathrm{R}_{e}}
\end{aligned}
$$

\# Bounded Motion and Escape Velocity:

* Total energy of mass ' m ' at the surface $=\mathrm{K}+\mathrm{P}$

$$
\mathrm{E}_{\mathrm{T}}=\frac{1}{2} m \mathrm{~V}^{2}-\frac{\mathrm{GM} m}{\mathrm{R}}<0
$$

If somehow we implant $K E$ such that its total energy $=0$

$$
\Rightarrow \begin{aligned}
\frac{1}{2} m \mathrm{~V}_{e}^{2} \frac{-\mathrm{GM} m}{\mathrm{R}} & =0 \\
\Rightarrow \quad \mathrm{~V}_{\text {escape }} & =\sqrt{\frac{2 \mathrm{GM}}{\mathrm{R}}}
\end{aligned}
$$

$$
\begin{aligned}
\text { Planet } & =\text { Earth } \\
\mathrm{V}_{\text {escape }} & =\sqrt{\frac{2 \mathrm{GM}}{\mathrm{R}_{e}}} \\
\mathrm{~V}_{0} & =-\sqrt{\frac{\mathrm{GM}}{r}} \\
\mathrm{TE} & =\frac{-\mathrm{GM} m}{2 r}
\end{aligned}
$$

$$
\begin{aligned}
\mathrm{V}_{\text {escape }} & =\sqrt{\frac{2 \mathrm{GM}}{\mathrm{R}_{e}}}=\sqrt{2 g_{s} \cdot \mathrm{R}_{e}}=11.2 \mathrm{Km} / \mathrm{sec} . \\
\mathrm{V}_{0} & =-\sqrt{\frac{\mathrm{GM}}{r}}
\end{aligned}
$$

If some how speed of satellite is increased from $V_{0} \rightarrow V_{\text {escape }}$

$$
\begin{aligned}
\frac{1}{2} m \mathrm{~V}_{e}^{2}-\frac{\mathrm{GM} m}{r} & =0 \\
\mathrm{~V}_{\mathrm{es}} & =\sqrt{\frac{2 \mathrm{GM}}{r}} \\
\mathrm{~V}_{\mathrm{es}} & =\sqrt{2 \mathrm{~V}_{0}}
\end{aligned}
$$

Increase in speed of satellite $=\Delta \mathrm{V}$

$$
\begin{aligned}
& =\sqrt{2} \mathrm{~V}_{0}-\mathrm{V}_{0}=\mathrm{V}_{0}(\sqrt{2}-1) \\
& =\mathrm{V}_{0} \times 0.414 \\
\Delta \mathrm{~V} & =41.4 \% \mathrm{~V}_{0}
\end{aligned}
$$

* If orbital velocity of a satellite is increased by 41.4%, then it escapes from the gravitational field of earth.

Gravitation
Ques.: An artificial satellite is moving around earth in a circular orbit such that its speed is equal to half of the escape velocity from the earth. Find the height of the satellite.

Solns.: \Rightarrow

$$
\mathrm{V}_{0}=\frac{1}{2} \mathrm{~V}_{\text {escape }}
$$

$$
\begin{aligned}
\sqrt{\frac{\mathrm{GM}}{\mathrm{R}+h}} & =\frac{1}{2} \sqrt{\frac{\mathrm{GM}}{\mathrm{R}}} \\
\frac{\mathrm{GM}}{\mathrm{R}+h} & =\frac{1}{\mathscr{A}_{2}}\left(\frac{\not 2 \mathrm{GM}}{R}\right) \\
2 \mathrm{R} & =\mathrm{R}+h \\
\mathrm{R} & =h
\end{aligned}
$$

\# Motion of Satellite in an Elliptical Path:

$$
\begin{aligned}
& \text { If } \mathrm{V}_{0}<\mathrm{V}_{s}<\mathrm{V}_{\mathrm{esc}} \\
& \frac{m \mathrm{~V}_{0}^{2}}{r}>\mathrm{F}_{g} \\
& \text { If } \mathrm{V}_{s}<\mathrm{V}_{0} \\
& \mathrm{~F}_{g}>\frac{m \mathrm{~V}_{0}^{2}}{r}
\end{aligned}
$$

\# Angular Momentum in Case of Satellite Motion:

The only force acting is gravitational force.

$$
\Rightarrow \begin{aligned}
\vec{\tau} \mathrm{F}_{g} & =0 \\
\mathrm{~L}_{i} & =\mathrm{L}_{f} \\
\mathrm{~L} & =m(\vec{r} \times \vec{v})=m v r \sin \theta \\
\mathrm{~L} & =m v r \sin \theta=m \mathrm{~V}_{\max } r_{\min } \\
& =m \mathrm{~V}_{\min } r_{\max }=\mathrm{constant} \\
\mathrm{G} & =\frac{1}{2} m \mathrm{~V}^{2}-\frac{\mathrm{GM} m}{r}=\frac{1}{2} m \mathrm{~V}_{\min }^{2}-\frac{\mathrm{GM} m}{r_{\max }} \\
& =\frac{1}{2} m \mathrm{~V}_{\max }^{2} \frac{-\mathrm{GM} m}{r_{\min }}
\end{aligned}
$$

